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REDUNDANCY ANALYSIS
AN ALTERNATIVE FOR CANONICAL CORRELATION

ANALYSIS

ARNOLD L. VAN DEN WOLLENBERG

UNIVERSITY OF NIJMEGEN

A component method is presented maximizing Stewart and Love’s redundancy
index. Relationships with multiple correlation and principal component analysis are
pointed out and a rotational procedure for obtaining bi-orthogonal variates is given.
An elaborate example comparing canonical correlation analysis and redundancy
analysis on artificial data is presented.

Key words: principal components, generalized multiple correlation analysis, cross
battery principle component analysis.

1. Introduction

In canonical correlation analysis components are extracted from two sets
of variables simultaneously in such a way as to maximize the correlation, #,
between these components. Mathematically, the criterion to be maximized

under restrictions is

(1) w’Rxyv - ½#(w’Rxxw - 1) - ½~,(v’Ryyv - 1),

where # and u are Lagrange multipliers. Elaboration then leads to the follow-
ing eigenvalue eigenvector equations [Anderson, 1958]:

(2) (Rxx-lRx~,Ruu-lR~x - #21) w = 

and

(3) (Ryy- 11~yxRxx-IRxy - v2I) v = 

The eigenvalues #~ and v~ are equal, and are also equal to the squared canonical
correlation coefficient. After extraction of the first pair of canonical variates, a
second pair can be determined having maximum correlation, with the restric-
tion that the variates are uncorrelated with all other canonical variates except
with their counterparts in the other set, and so forth.

A Fortran IV program for the method of redundancy analysis described in this paper can be
obtained from the author upon request.

Requests for reprints should be sent to Arnold L. van den Wollenberg, Department of Mathe-
matical Psychology, Psychologisch Laboratorium. Universiteit Nymegen, Erasmuslaan 16, The
Netherlands.
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Whereas in bivariate correlation and multiple correlation analysis the
squared correlation coefficient is equal to the proportion of explained variance
of the variables under consideration, this is not the case for the canonical
correlation coefficient. Canonical correlation actually gives no information
about the explained variance of the variables in one set given the other, since
no attention is paid to factor loadings. Two minor components might correlate
very highly, while the explained variance of the variables is very low, because
of the near zero loadings of the variables on those components. As a high
canonical correlation does not tell us anything about the communality of two
sets of variables, it is as such an analytical tool which is hard to interpret.

As an addition to canonical correlation analysis, Stewart and Love [1968]
introduced the redundancy index, which is the mean variance of the variables
of one set that is explained by a canonical variate of the other set. That is, in
the present notation,

(4)

and

(5) {~y ---~ £ (~Y~,
i

where (~y, is theredundancy of the critieria given the i th canonical variate of the
predictors ((~y is the overall redundancy). The symbol my stands for 
number of criteria; u~ is the i th canonical correlation, while fy’Z = v/Ryy is the
vector of loadings of the y-variables on their i th canonical component.

Unlike canonical correlation, redundancy is non-symmetric. Thus in gen-
eral, given a canonical correlation coefficient, the associated redundancy of the
Y..variables will be different from that of the X-variables. (Since the redun-
dancy of the X-variables given the Y-variables is completely analogous to that
of’ the Y-variables given the X-variables, we will only discuss the latter one.)

The redundancy formula can be looked upon as a two-step explained
variance formula, in which #2 is the explained variance of the canonical variate
of one set, given its counterpart in the other set whereas the second part of the
formula is the mean explained variance of the variables by their i tn canonical
component.

In terms of this two-step explained variance approach, canonical correla-
tion analysis only maximizes one part of the redundancy formula. It would
seem reasonable, however, to try and maximize redundancy per se.

2. The Method

To maximize redundancy it is convenient to rewrite the index. From the
derivation of the canonical correlation coefficient we know [Anderson, 1958, p.
291] that,

(6) Ryxw -- I,t Ryyv = O,



ARNOLD L. VAN DEN WOLLENBERG 209

and

(7)
So,

(8)

Ryxw = #RyyV.

1
(9) = --*#l*vt’RyyRyyv~*#t

my

(10) 1 1- w,’ lCx~,,%,xw, = -- L,;;
my my

where fyL is the vector of loadings of the Y-variables on the i t~’ canonical
component of the X-variables. Therefore redundancy can also be looked upon
as the mean squared loading of the variables of one set on the canonical variate
under consideration of the other set.

Given two sets of variables X and Y standardized to zero mean and unit
variance, we seek a variate ~ = Xw with unit variance such that the sum of
squared correlations of the Y variables with that variate is maximal, and a
variate ~" = Yv for which the same holds in the reverse direction. The correla-
tion of the Y-variables with the variate ~j is given by the column vec-
tor (1/N)Y’Xw; the sum of squared correlations is equal to the minor product
moment. So we have to maximize

(!1)

or

(12)

d~ = -~w’X’YY’Xw 1 , ,- u(-~w X Xw - 1),

~ = v’Y’XX’Yv - u(~v Yv - 1),

6p = w’RxyRyxw- #(w’Rxxw- 1),

~ = o’RyxRxyV - u(v’Ryyv - 1).

Setting the partial derivatives with respect to w and v equal to zero we get

~W RxyRyxw #Rxx w = O,

(13)

~v = R~xR~v - uR~v = 0,
which can be written as two general characteristic equations:

(Rx~Ry~ - #Rx~)w = 0,
(14)

(R~Rx~ - uR~)v = 
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The numerical solution to this problem is formally identical to that for the
case of canonical correlation, since both the matrix products RxyRyx and
RyxRxy and the matrices R~ and Ryy are real symmetric matrices. However,
the eigenvalues # and v are not equal, as in the case of canonical correlation
analysis, so one has to compute both eigenstructures. We can interpet # as my
times the mean variance of the Y-variables that is explained by the first
canonical variate of the X-variables. We will return to this point later.

When subsequent redundancy variates are determined we want them to be
uncorrelated with the preceding variates extracted from the same set. It is not,
in general, possible to have bi-orthogonal components in redundancy analysis,
i.e. the components in the one set are not necessarily orthogonal to the
components in the other set, since Xw and Yv are determined separately (in
canonical correlation analysis the canonical components are determined bi-
orthogonally).

The functions to be maximized when thej tn variates are determined are

~ = w~’R~yRy~w~ - ~(w~’R~w~ - 1) - 2 ~ a~w~’R~w~,

(~)
¯ ~= vz’Ry~R~yv2-
for/ = 1, ..-,j- 1.

Differentiating and setting equal to zero, leads to

= ~.~.~w~ - .~w~ - ~ ~,~w, = 0
(16)

RyxRxyvj

Premultiplication by w/ and v~’ respectively for every i gives us

w~’R~yR~wj - ~ = O,
(~7)

vt’RyxRxyvj - ~t = O.

B~ause wt’RxyRyx is equal to ~w~’R~ (cf. the characteristic equation for
the first variate) and v~’R~R~ is equal to ,~v/R~y, we have

~w~’R~w~ - a~ = 0 ~ a~ = O,
(18)

~v~’R~rv~ - #~ = 0 ~ #~ = 0,

which leaves us with the same characteristic equation that we found for the
first variates. In other words, the vectors w~ and v~ satisfying the above
restrictions are proportional to thef~ eigenvectors of the characteristic equa-
tions

(R~yR~ - ~R~)w = 0,

(19)
(R~R~ - ~R~)v = 
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Norming the eigenvector wj so as to satisfy wj’Rxxw~ = 1, we have thejth

factor of the predictors explaining a maximum of variance in the criteria (and
vice versa).

3. Multiple Correlation as a Special
Case of Redundancy Analysis.

When we take a closer look at the matrix product Rxx-lRxyRy~, we can see
that there is some resemblance with multiple correlation. When we think of
just one Y-variable, then Rx,-IRxy is the column vector of/3-weights in the
multiple regression of that variable. Now, however, it is not the row vector of
/3-weights which is postmultiplied with the column vector of correlations of
that variable with the predictors to give a scalar, but rather the reverse is true,
to yield a matrix. In this matrix, the diagonal elements are the/3-weights of the
corresponding predictor in the multiple regression of the criterion times its
correlation with the criterion; in other words, the partial regression coefficient
of the given predictor in the multiple regression of the given criterion. The
trace of that matrix is the total proportion of variance of the criterion ac-
counted for by all predictors (the multiple correlation squared). From this it 
obvious that canonical redundancy analysis includes as special cases multiple
and bivariate correlation. The equations are, for only one Y-variable,

(20) (Rx~-Ir~uryx - #I)w = 

or

(21) (/3ry~ - #l)w = 

When Ry.x~ is substituted for u, and/3 for w, one can show that the character-
istic equation still holds:

(22) /3 t’yx Rxx-Xrxy - Ry.x2 /3 = 0;

(23) /3 (R~,.x~ - Ry.x~) = O.

So in the case of one criterion, u is the multiple correlation squared and w is the
vector of/3-weights.

When we generalize to more Y-variables, the jt~, diagonal element in
R~,,-1R~,~,R~,,~ is the sum of contributions of thejt~ X-variable to the multiple
correlation of all Y-variables with the set of X-variables. Thus it is possible to
look at those diagonal elements as a kind of overall canonical partial regres-
sion coefficients. The trace of the matrix product under consideration is as
expected equal to the sum of the redundancies of the variables of the other set.

So, when all redundancy components of the X-variables are determined,
the explained variance of the Y-variables is equal to their respective squared
multiple correlation with the X-variables. This is also true for canonical
correlation analysis of which multiple correlation is a special case.

When there are residual dimensions (X and Y have a different rank) for
one of the two sets, the variables of the other set will have zero loadings on
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them. This then implies that both analyses, when all possible components are
determined, span the same space, though in a different way.

4. Principal Component Analysis as a
Special Case.

When the two sets upon which redundancy analysis is performed are the
same, (19) leads 

(124) (Rxx-lRxxRxx - ~I)w = 

or

(25) (Rxx - ul)w = 

which is the characteristic equation of principal component analysis.
The characteristic equation (2) of canonical correlation analysis per-

formed on two identical sets of variables contains an identity matrix, out of
which the components are to be extracted. This is obvious in this case where all
pairs of canonical variates correlate perfectly. Thus principal component anal-
ysis can be looked upon as a special case of redundancy analysis, but not,
however, as a special case of canonical correlation analysis.

5. Bi-orthogonality

When a redundancy analysis is performed, extracting from each set p
factors, for example, the explained variance of the variables in each set is a
maximum, but the sets of variates spanning maximal redundant spaces are not
hi-orthogonal. That is to say, the correlation matrices of variates within sets
(~~ and ffyu) are identity matrices, but the matrix of intercorrelations between
sets of variates ~y (w’R~yv) is not a diagonal one. For some applications bi-
orthogonality could be a desirable property.

Thus we seek orthogonal rotation matrices T and S such that ~,* = ~,T
and Z* = ZS are sets of variates that are bi-orthogonal, where E is the matrix
of redundancy variates ~ of the X-variables and Z is the matrix of redundancy
variates ~" of the Y-variables. This now can be done by performing a canonical
correlation analysis upon the redundancy variates E and Z.

The characteristic equation (see [2]) becomes

(26) (~xx-l~xy~yy-l~yx -- a2l)t = O.

Because Cx~ and Cyy are identity matrices this reduces to

(27) ((I)xy(I)yx asI)t = 0

As in canonical correlation analysis, s can be found as a function of t:

(28) S = 6Pyxt/tx,

and a~ is the squared correlation between the variates Et and Zs.
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(29)

and

(30)

The whole procedure can be summarized as

(’l~xy’~yx - o~V)T = 

S = A-l"byxT,

where A-1 is the diagonal matrix of inverses of the correlations between pairs
of variates. It is possible to view T and S as orthogonal rotation matrices,
containing the sines and cosines between old redundancy variates and new (bi-
orthogonal) redundancy variates.

6. A n Example with Artificial Data

Of four X-variables and four Y-variables the intercorrelation matrices R~
and Ryy were constructed by means of orthogonal pattern matrices F and G;
R~ = FF’, Ryy = GG’. The matrices F and G are given in Table la. The matrix
Rxy was constructed with the same loadings and a more or less arbitrary matrix
of intercorrelations between the components of the two sets. This matrix and
the resulting total correlation matrix can be found in Table lb and lc respec-
tively.

In Table 2 the matrix-products Rxx-lRxyRyx and Ryy-~RyxRxy are given.
The diagonal entries of these matrices are interesting as they can be looked
upon as a kind of overall canonical partial regression coefficients (above). For
example, .643 is the sum of partial regression coefficients of the first X-variable
in the multiple regression of each of the Y-variables on the set of X-variables.
In Table 3 the beta-weights for the construction of the variates are given for
canonical correlation analysis and redundancy analysis respectively. In Table 4
the ioadings are given of the X- and Y-variables on both the canonical and
redundancy variates. So all in all, we have eight sets of factor loadings.

Table 5 gives the redundancies as obtained by canonical correlation
analysis and redundancy analysis respectively. As the complete set of factors is
determined, the total redundancies are the same for both types of analysis
(above). Differences between both methods can be easily seen by deleting, for
example, the last component of both.

The redundancy (explained variance) per variable can be obtained 
summating the squared loadings (as given in Tables 4a and 4b) of a variable 
the components of the other set. In Table 6 the correlations between the sets of
variates are given, illustrating the lack of bi-orthogonality for the case of
redundancy analysis.

When the rotational procedure described above is performed on the
complete set of redundancy factors given above, the canonical correlation
solution will result, as in this case where both methods span the same space
(above). However if only the first two factors are retained, the solution will 
definitely different from that for canonical correlation retaining just two fac-
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TABLE 1

Matrices in the construction procedure

(a) Tactor pattern F G
Tactors f~ctors

variables 1 2 3 4~

1 +(.50 ~) - (.40 ~) - (.07 ~) - (.03~)

2 +(.SO~) - (.4o ½) + (.o7 ½) + (,o3½)

3 +(.50 ½) * (.40 ½) - (.07 ½) + (.03½)

4 +(.50 ~) + (.40 ½) + (,07 ~) - (,03~)

2 3 4

÷(.40 ~) + (,30 ½) + (.20 ½) - (.10~)

+(.40 ½) + (,30 ½) - (,20 ~) + (.10½)

+(.40 ½) - (.30 ½} + (,20 ½) + (.10½)

+(.40~) - (.30 ~) - (.20 ~) - [.10~)

(b) component intercorrelations

Y-components

X-components 1 2 3 4

I .’70 .10 -,10 .I0

2 -.10 .75 .10 -o10

3 +.10 -.10 .80 .10

4 -.10 +.10 -,10 .85

I 2 ~

2 .800

3 .140 .060

4 .060 .140 .800

4 5 G 7

5 -.003 .062 .422 .710

6 .265 .203 .714 .440 .400

7 .404 .709 -,142 .089 .200 .000

8 .723 ,461 -,012 -.037 ,000 ,200 ,400

tors. In Table 7 the rotation matrices T and S are given, which rotate the two
pairs of variates in bi-orthogonal form.

By postmultiplication of the original sets of loadings by the appropriate
rotation matrix, the loadings on the bi-orthogonal redundancy variates are
found. These are presented in Table 8, while the diagonal matrix of inter-
correlations between rotated X- and Y-variates is finally given in Table 9.
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TABLE 2

Matrix products R-1R R and R-IR R
xx xy yx yy yx xy

R-1R R
xx xy yx

.643 .273 ,054 .004

.146 .518 -.031 .085

-.079 -.213 .612 ,111

.128 .261 .113 .606

R-1R R
yy yx xy

.517 .347 -.140 -.169

.435 .657 .175 .234

-.024 .081 .582 .451

-.082 .097 .346 .509

A more or less substantive evaluation of the above example can be given
by assuming that the X- and Y-variables are intelligence tests. T.he canonical
correlation method finds as first factors those that are maximally correlated,
but unimportant in the sense of explained variance. The test batteries resemble

;ABLE 3

Beta weights for canonicel

correlation- and redundancy analysis

canon±cal redundancy

varlates variates

1.182 -I.047 .781 -.395 .506 .184 0,842 -1.503

X- -~.33~ 1.201 .102 -,152 ,~3 .210 -,530 +1.662

variables -1.585 -.790 -.307 -.162 -.266 -.834 1.029 +1.197

1.524 .619 -.330 -.667 .606 -.161 -1.157 -1.235

canonical redundancy

variates var±ates

,867 .185 -.485 -.530 -.I01 .620 -.480 .823

Y- -.955 -.360 -.125 -.494 -.559 .391 .451 -,796

variables -.555 .915 .337 -,208 -,473 -,416 -.726 -.613

.644 -,566 .705 -.279 -.392 -,367 .531 ,855
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variables

TABLE 4a

Factor load±rigs in canonical correlation analysis

-,016 -,159 .799 -.580

-.271 ,403 .661 -,571

-.281 -,370 -,455 -,760

,140 .092 -,514 -,841

Y-varlates

-.014 -.130 .615 -.415

-.237 .330 .509 -.409

-.245 -.302 -.350 -.543

,122 .075 -,395 -,602

y-

variables

.327 ,183 -.380 -,550

-.419 -1326 -,137 -,545

-.108 .598 ,402 -,304

.202 -.216 .627 -.329

.374 .224 -.487 -.769

-.480 -.398 -.178 -.761

-.124 .729 .522 -.425

.231 -.264 .815 -.460

each other to a high degree, but in quite minor facets. The first two intelligence
dimensions of the X-battery yield mean explained variances of 10.0% for the X-
variables and 8.9 percent for the Y-variables. The situation is not as bad for the
first two factors of Y. Here the results are 31.2 and 21.9 respectively.

By contrast, the first two redundancy factors of X explain 85.7 percent of

TABLE 4b

Factor loadings in redundancy analysis

variables

X-variates

,837 .226 .492 -.080

,888 ,285 .043 *,359

,315 -.925 .189 ÷.099

.482 -.788 -.358 -,135

Y-variates

m343 --,454 --.423 --,264

.295 --.575 .341 .251

.590 ,328 -.289 ,291

,538 .246 .395 -,289

variables

-,622 -.332 .211 .157

-.636 -.346 -.210 -.151

-.370 .604 .217 -.144

-,345 ,589 -,227 .148

-,419 ,693 -,445 ,382

-,678 ,565 ,366 -.295

-,650 -,439 -,612 -,106

-,693 -,455 .330 ,451
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TABLE 5

Redundancies {or canonical correlation analysis {C.C.A,)

and redundancy analys±s (RoA.)

===========================================================================

C.C.A. R.A.

X-variables Y-variables X-variables Y-variables

.033 .084 .262 .210

.056 .135 .235 .176

.229 .176 .047 ,133

,249 ,200 ,023 ,075

total .567 .595 .567 ,595

the variance of the X-variables and 49.7 percent for the Y-variables. Given the
first two Y-variates, the two figures are 68.4 and 38.6 respectively.

The danger of obtaining highly correlated, but unimportant factors in a
canonical correlation analysis is especially present when there are two varia-
bles, one in each set, which are not characteristic for the whole set, but yet
highly correlated with each other. Then one can find a factor pair of essentially
unique factors as the first canonical factors.

TABLE 6

Correlation matrices of X- and Y-variates

[~ ) for both types of analysis
xy

C.C.A. R,A,

.873 .000 ,000 ,000 -,689 -.115 -.175 ,146

,000 .818 ,000 .000 .116 -.733 -,150 ,094

,000 ,000 ,769 ,000 -,168 ,156 ,774 -,107

,000 ,000 ,000 ,715 -,138 ,081 -,126 -,842
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TABLE 7

Rotation matrices T (for X-variables)

and S (for Y-variables)

T S

.0667 .9978 -.0943 .9955

.9976 -,0667 .9955 .0943

TABLE 8

Loadings after rotation to bi-orthogonality

============================================================

variables

X-variates Y-variates

.281 .820 -,430 .372

.343 .867 -.554 .333

-.902 .376 ,366 .566

-.754 .533 .281 ,521

variables

-.272 -,651 ,729 -.651

-.285 -.665 .627 -.665

.636 -.311 -,378 -.311

,61g -.288 -,388 -,288
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TABLE 9

Correlation matrix o~ the new redundancy

variates a~ter rotation.

Y-variates

-.7420 .0000

X-variates ,0000 -.6986

219

In redundancy analysis it is not necessary to extract factors from both sets.
This has an important advantage. When we have a set of dependent and
independent variables, the predictive qualities of the independent set are found
in the redundancy factors without the complication of taking into account the
factors of the other set. It is easily seen that the Y-variates can explain more
variance of the X-variates, than the other way around. However, the predictive
power of the X-battery with respect to the other battery is almost entirely
concentrated in the first two factors. This is less the case for the Y-set.

Retaining the first two dimensions of each battery, the resulting spaces are
optimal in the redundancy sense. When one wants to interpret the factors as
intelligence dimensions, bi-orthogonality could be desirable. Doing a rotation
towards bi-orthogonality does not influence the explained variances for the
total space; however, a different distribution of explained variance over factors
will result. As a result the factor pairs can be interpreted irrespective of all the
other intelligence factors of both sets.
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